Department of Agrobiology and Bioresources

Dr. Kenji YAMANE Faculty of Agriculture

Until 2012 Department of Bio-productive Science

Plant Science

Horticulture

Crop Science Soil Science

Plant Nutrition

Comparative Agriculture

Geology

Farm

Weed science center

Animal Science

Breeding and Reproduction Function and Morphology Nutritional Biochemistry **Animal Production and** Reproduction(Farm)

Applied Biology Plant Breeding Plant Pathology

Applied Entomology Insect Biotechnology

Applied Biochemistry Biomaterial Science Inorganic **Biochemistry Bioorganic Chemistry Biochemistry Food Chemistry Food Biochemistry Applied Microbiology**

Now Department of of Agrobiology and Bioresourses

Plant Science

Soil Science Plant Nutrition

Comparative Agriculture

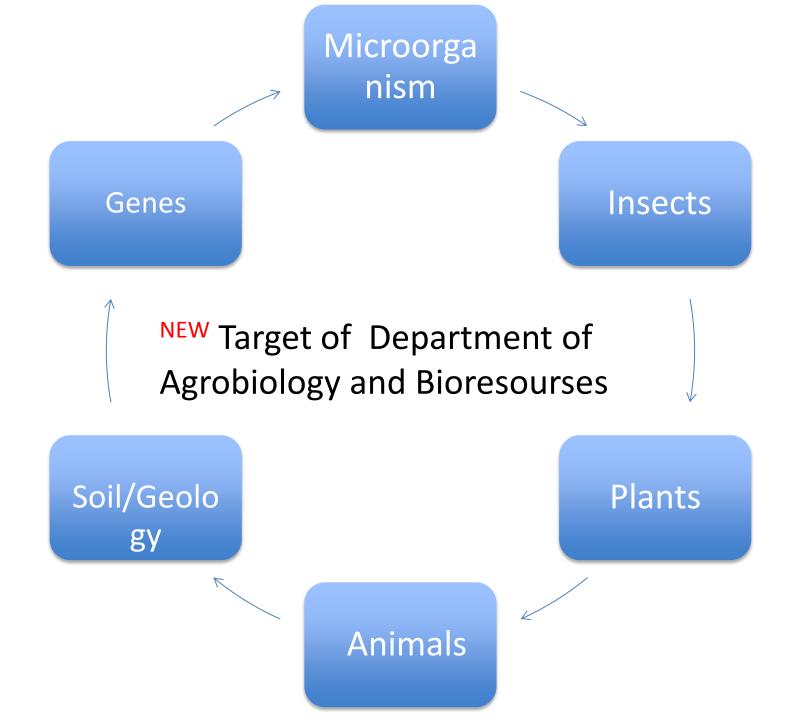
Geology

Farm

Bioscience center

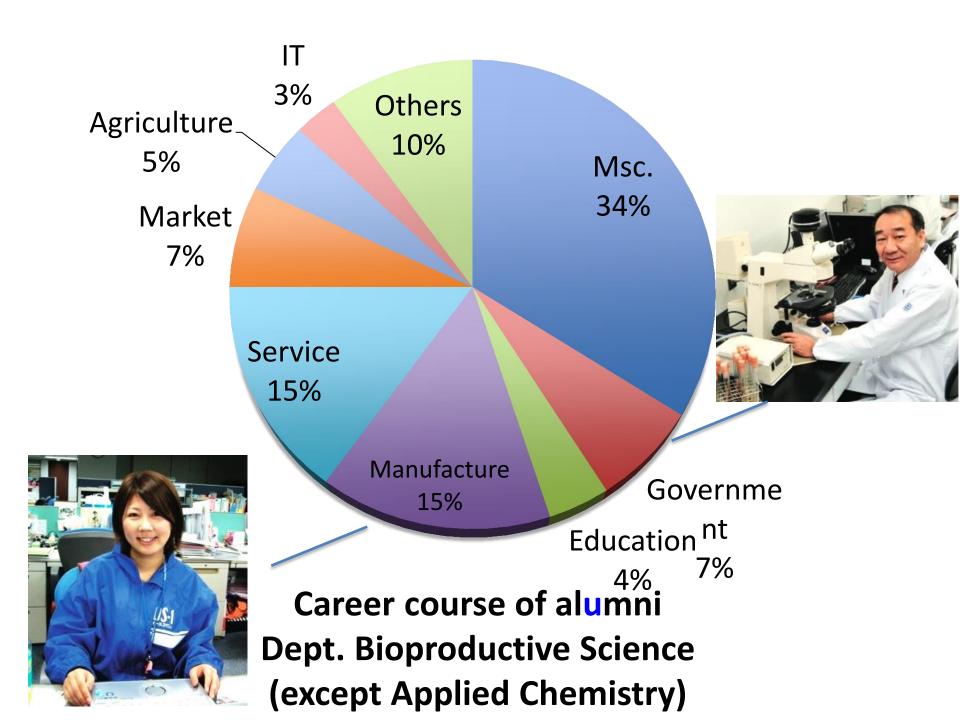
Weed science center

Animal Science


Breeding and Reproduction <u>Function and Morphology</u> Nutritional Biochemistry Animal Production and Reproduction(Farm) Applied Biology Plant Breeding <u>Plant Pathology</u>

Applied Entomology Insect Biotechnology

Department of Applied **Biochemistry**^{Now} **Biomaterial Science Inorganic Biochemistry Bioorganic Chemistry Biochemistry Food Chemistry Food Biochemistry Applied Microbiology**



Mission of Dept. of Agrobiology and Bioresources

- Sustainable production and usage of bioresources.
- Function of bioresources

Division Plant Science

- Integrate theories of plant production at a regional as well as global scale, with an emphasis on soil and plant resources
- Sustainable coexistence of plant and human life

分析化学更颜

Tissue culture

Quality evaluation

Experiments

Planting rice in paddy field

Technical Training in University Farm (102 ha)

Putting bag on pears

ナシの気かけ

Centre of collaborative training of other universities

費朝とはオコポンになずかれます

気業 卑省

っまりは 曲気作

Dr. Hide HIRAI

Soil Science

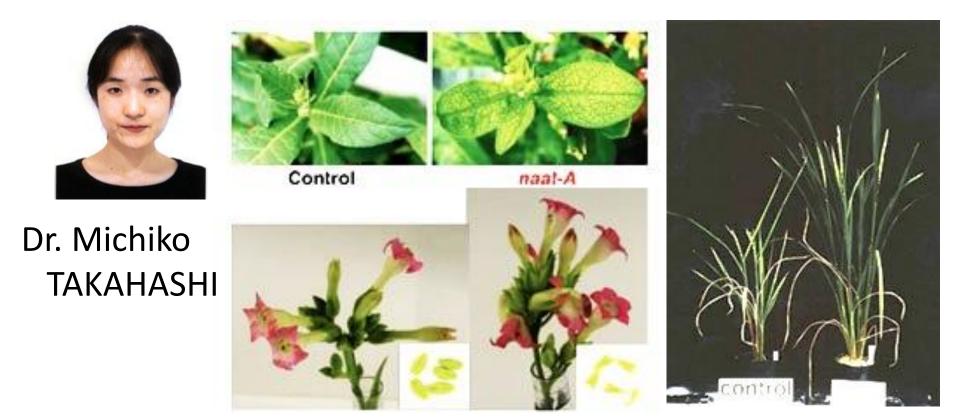
(1)Soil classification
(2)Methane(CH₄) formation
(3)Phosphate metabolism
(4)Rural area development

Plant Nutrition Nutrients in the food chain

Higher plants

Animals

Dr. Hitoshi


SEKIMOTO

Hyperaccumulator Fertilization Soil Higher plants would be vehicles of nutrients mediating between the soil and animal

(1) Micronutrients in the food chain

- (2) Iodine (I) uptake in plants
- (3)Zinc and cadmium

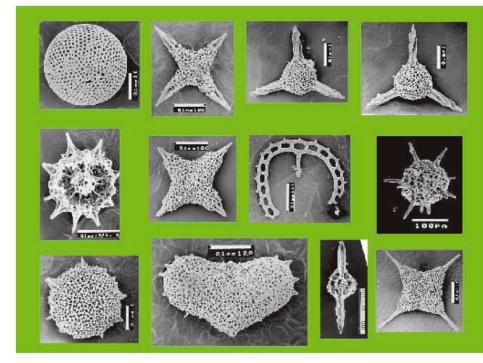
(4)Controlled-release fertilizer and organic fertilizer (5)Cesium into plants from fields in Fukushima

Plant Nutrition & Physiology(1) Plant stress and heavy metals(2) Transporter genes for Fe,Zn

Comparative Agriculture (Regional and Agricultural Develop.)

Dr. Ryo FUKUI

Soil microbiology to establish sustainable farm management

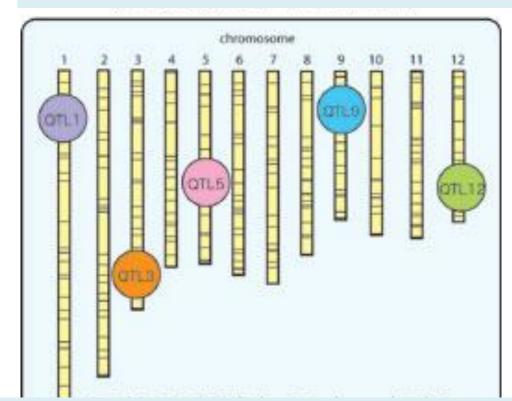

Geology

Dr. Yoshi AITA

(1)Radiolarian(2)Phytolith (plant opal)

Crop Science

Dr. Yoshi WADA


(1) Photosynthesis C_3 - C_4 intermediate plants (2) Heat stress on rice grain

Dr. Taka KASHIWAGI

Crop Science

Genetic factor on rice traits

Analysis of QTL in rice -yield, lodging tolerance etc.

Plant Ecology (Weed Science Center)

Dr. Taka NISHIO

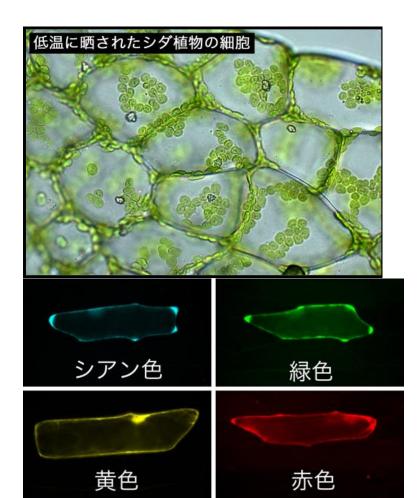
Pueraria lobata

Rudbeckia laciniata

(1) Ecological management of native and invasive weeds.

Plant Production and Tech (University Farm)

Dr. Yukio IJIRO Dr. Yuki TAKAHASHI


(1) Production and propagation of horticultural crops,(2) Less laborious, low cost rice production

Kodama Lab in Bioscience Center

Dr. Yutaka KODMA

Horticultural Science

Kenji YAMANE

Takeshi KUROKURA

- Pre and Postharvest Quality
- Control of Flowering in Peach
- Flowering and quality of Strawberry
- Horticultural Well-being

Molecular physiology of flowering in Rosaceae crops -Wild strawberry as a model-

Left: Normal plant Right: Transgenic plant

SD wild strawberry can flower under LD condition by the suppression of flowering inhibitor.

Overview

epartment of Agrobiology and Bioresources

The Division of Animal Science

Research program in the division cover the range from analysis of genes to analysis of whole organisms and fall into four broad categories.

- **O Function and Morphology**
- **O Breeding and Reproduction**
- **O Nutritional Biochemistry**
- **O Animal Production and Reproduction (Farm)**

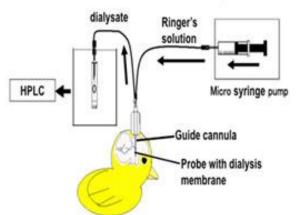
The division aims at the theoretical and technical investigation regarding animal production issues. High standard instruction and research concerning genetics, breeding, reproduction, morphology, ecology, nutrition and feeding, physiology, pathology, and management are conducted sophisticatedly and widely. In cooperation with the National Institute of Livestock and Grassland Science, instruction and research are also conducted.


The Division of Animal Science

Faculty

Professor Animal Reproduction

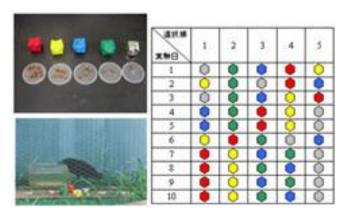
"Reproductive technology and cytogenetics in mammals"

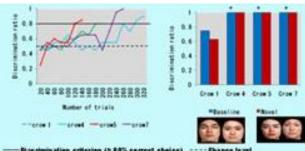


Kunio Sugahara, Ph.D. Professor Animal Nutrition

"Regulation of energy metabolism in domestic fowl"

Outline of brain microdialysis




Shoei Sugita, Ph.D.

Professor Animal Anatomy & Physiology "Physiology and morphology

Physiology and morphology of the domestic and wild animals; especially central nervous system and mechanisms of vision"

- Significant discrimination; Binemial probability test; p <.05
- Fig 3. Leff discrimination training. Right generalization test.

The Division of Animal Science

Faculty

Yoshikazu Nagao, Ph.D.

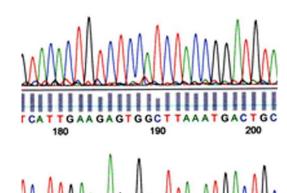
Animal Reproductive Science "Early development and

Early development and biological applications of bovine embryos"

Professor

Fumiaki Yoshizawa, Ph.D. Professor Nutritional Physiology

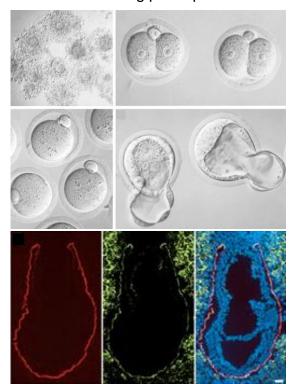
"Studies on nutritional regulation of protein synthesis and its mechanism"


A A a

Emiko Fukui, Ph.D. Associate Professor Animal Breeding

"Genetic variation of blood proteins and DNA in animals"

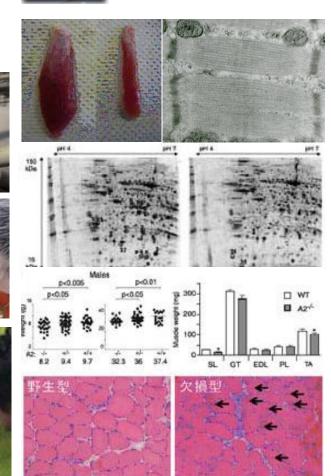
TACACTGTCTCCATCTACCGGATGTA 100 110 120


Faculty Paculty Faculty Facult

Hiro Matsumoto, Ph.D.

Associate Professor Reproductive Physiology

"Developmental biology of mammalian embryos during periimplantation"


Masato Aoyama, Ph.D. Associate Professor Applied Ethology

"Neurophysiological mechanisms of stress responses in domestic animals and establishment the animal managements for reducing their stress"

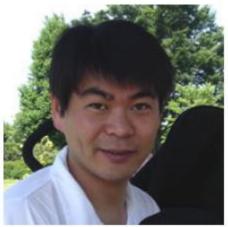
Yusuke Sato, Ph.D. Assistant Professor Muscle Physiology

"Differential regulation of the muscle "

Applied Biology Division

This division has a diverse teaching program and conducts research in the applied biology to meet local and international needs agricultural science. The degree program provides students with a variety of courses from the foundation of biology and chemistry to the modern biotechnology and the ecological science. Our main role is to train professionals in plant breeding, plant genetics, plant pathology, plant virology, applied entomology and zoology, sericulture science, and insect technology.

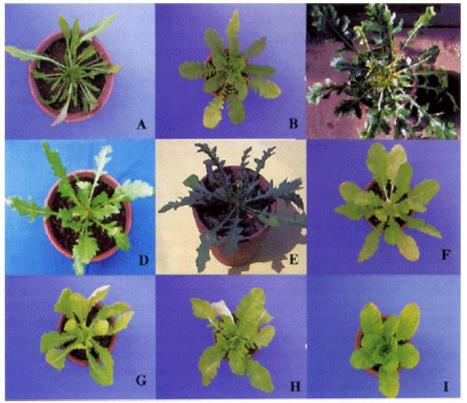
✓ Plant Breeding
 ✓ Plant Pathology
 ✓ Applied Entomology
 ✓ Insect Biotechnology


Insect Biotechnology

Bombyx mori: A source of Insect Biotechnology, providing a range of products for our use.

Prof. KAWASAKI, H

Dr. IWANAGA, M


Through strategies such as diapause, metamorphosis, and communication capacity, insects flourish on the earth. We learn from their life through observation, biotechnology, paper-reading. We study insect endocrinology, metamorphosis, and viral diseases, mainly of the silkworm *Bombyx mori*. Recent genetic and genomic analyses have provided a wealth of new information for understanding insects.

Plant Breeding

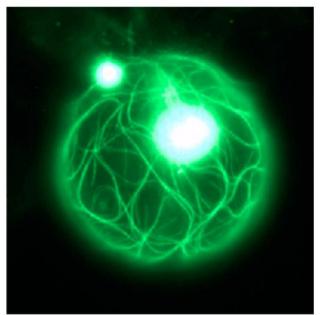
Prof. KANEKO, Y Dr. BANG, S. W.

Parental plants: (A) *Diplotaxis tenuifolia*, (B) *Raphanus satives* cv. '4-season leaf', and novel progenies: (C) amphidiploid, (D and E) sesquidiploid, (F-I) *D. tenuifolia* monosomic addition lines of *R. sativus*.

We are exploring the potential for distant hybridization in the genetics and plant breeding of Cruciferae, including radish, chinese cabbage, turnip, cole and their wild allies. We provide novel hybrid progenies, such as synthetic amphidiploid line, alien gene(s) introgression line, alloplasmic line, monosomic addition line and monosomic substitution line. Our research currently focuses on the production of cytoplasmic male sterility line and clubroot resistant line, and using a character for low photorespiration to improve the crop production.

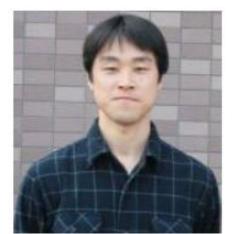
Applied Entomology

Prof. Mr. TAKAHASHI, S. Mr. KAGAWA, K MURAI, T


Recently *Aphis glycines*, the soybean aphid, was introduced into the USA where it is now a pest.

Ceranisus menes, a parasitic wasp, attacking a thrips larva

Our research examines basic and applied aspects of aphids, thrips, and their natural enemies in several crop systems. Our basic research focuses on revealing the life cycle and ecology of aphids and thrips, and relationships between insects and their associated organisms. Our applied research includes evaluating the efficacy of natural enemies for controlling target pests, developing recommendations for using biological control in specific areas, and integrating biological control into integrated pest management systems.


Plant Pathology

Plant virus based-vector epressing green-fluorescent protein in a protoplast

Prof. NATSUAKI, T

Dr. NISHIGAWA, H.

We offer exceptional opportunities to gain experience in researching plant pathogens, especially of viruses and phytoplasmas. Our facilities for investigating host-pathogen interactions are excellent. We use advanced molecular biology, virology and computing technology to study the interaction between plant pathogenic viruses and the host plants they infect. We also investigate the many attenuated viruses that may offer better ways to control plant viral diseases without using chemical pesticides or genetically modified organisms.